Home   FAQs   New Arrivals   Specials   Pricing & Shipping   Location   Corporate Services   Why Choose Bookware?  
Call our store: 9955 5567 (from within Sydney) or 1800 734 567 (from outside Sydney)
 View Cart   Check Out   
Browse by Subject
 TAFE Accounting
 TAFE I.T./Computing
 TAFE - Other
 Windows 8
 Adobe CS6
 CCNA 2012
 CCNP 2012
 Web Design
 Project Management
 Mobile Devices
 Windows Server 2012
 SQL Server 2012
Economics and Business
 Business Information Systems
 Human Resources

Teaching Mathematics: Foundations to Middle Years, 2nd Edition

by: Di Siemon, Kim Beswick, Kathy Brady, Julie Clark, Rhonda Faragher, Elizabeth Warren

Notify me when in stock

On-line Price: $80.95 (includes GST)

Paperback package 0

19%Off Retail Price

You save: $19.00

Usually ships within 1 week.

Retail Price: $99.95

Publisher: OXFORD UNIVERSITY PR,06.11.15

Category: Level:

ISBN: 0195523822
ISBN13: 9780195523829

Add to Shopping Cart

Teaching Mathematics: Foundations to Middle Years connects readers to the bigger picture of mathematics. This comprehensive resource is designed to help pre-service teachers gradually build mathematically knowledge and become confident about teaching the subject to a range of age groups, in diverse learning environments. Spanning Foundations to 9 mathematics curriculum, the book's unique structure explores the different stages of how children learn maths and how to teach maths, before drilling down to the specific strands and skills by age group.
Updated to draw on the revised Australian Curriculum, the second edition is rich with student work examples, practical activities and a wealth of teaching and learning tools to ensure pre-service teachers feel positive about mathematics and their role in teaching it.
New to this edition

- Additional and updated practical activities for pre-service teachers to take straight into the classroom
- More student work examples throughout to help link theory to practice and more references to the Australian Curriculum
- 'Teaching Challenges' feature explores examples of students' miscomprehension, likely difficulties, error identification and analysis in student work
- 'Consider and Discuss Your Maths' and 'Consider and Discuss Your Teaching' questions and tasks differentiate between learning mathematical content and learning to teach maths in the classroom
- All chapters updated to draw on contemporary mathematics education research and current theories on the teaching and learning of mathematics and with reference to the current revised Australian Curriculum


Part 1: Setting the Scene
1. Understanding School Mathematics
What is mathematics?
Goals of school mathematics
Affordances and constraints
2. Learning Mathematics
What does it mean to learn mathematics?
Learning and understanding mathematics
Developing your own theory of mathematics learning
3. Teaching Mathematics
What does it mean to teach mathematics?
Connections among beliefs
How can we know we are teaching?
Knowledge for teaching mathematics
Effective mathematics teaching
Part 2: Understanding the Challenges and Opportunities
4. Thinking Mathematically
Learning and doing mathematics
Making a start with mathematical thinking
General processes for problem solving and reasoning
Helping learners to think mathematically
5. Communicating Mathematically
The language of mathematics
Language and culture
Communicating in the mathematics classroom
6. Representing Mathematically
What are mathematical representations?
Traditional representations
The importance of mathematical language and recording
Using representations to build abstract thinking
Choosing and using materials and models
Choosing materials and models for the classroom
Multi-representational learning environments
7. Assessing and Reporting
Assessment is about testing, right?
Assessment of learning
Assessment for learning
8. Understanding Diversity
Who are diverse learners?
Language of diversity
Diversifying the curriculum
Supporting diverse learners
Part 3: Exploring the Big Ideas in Mathematics
9. Numeracy in the Curriculum
What is numeracy?
Numeracy across the curriculum
Critical numeracy
10. Developing a Sense of Number and Algebra
Understanding number sense
Number sense in practice
Developing a sense of number
11. Developing a Sense of Measurement and Geometry
Linking measurement and geometry
What is measurement?
Developing measurement sense
Spatial sense
How geometry is learned
12. Developing a Sense of Statistics and Probability
Statistical literacy
What is statistics?
What is probability?
Part 4: Laying the Basis for F-4 Mathematics
13. Algebraic Thinking: F-4
What is pattern and structure?
Why is pattern and structure important?
Early algebraic thinking
Functional thinking
14. Number Ideas and Strategies: F-2
The origins of number
Research on early number learning
Playing with number
The numbers 0 to 10
A sense of numbers beyond 10
Scaffolding solution strategies
15. Place Value: F-4
Prerequisite ideas and strategies
Understanding tens and ones
Introducing three-digit numeration
Developing four-digit numeration
Extending to tens of thousands and beyond
16. Additive Thinking: F-4
Why additive thinking?
The development of additive thinking
Contexts for addition and subtraction
Additive solution strategies
Problem solving
17. Multiplicative Thinking: F-4
What is multiplicative thinking?
Why is multiplicative thinking important?
Initial ideas, representations and strategies
Building number fact knowledge and confidence
Computation strategies
Problem solving
18. Fractions and Decimal Fractions: F-4
Making sense of fractions
Developing fraction knowledge and confidence
Introducing decimal fractions
Consolidating understanding
19. Measurement Concepts and Strategies: F-4
Why is teaching measurement important?
Measurement concepts in the curriculum
Measurement learning sequence
Approaches to developing an understanding of length
Approaches to developing an understanding of time
20. Geometric Thinking: F-4
Classifying spatial objects
Relationships between spatial objects
Developing dynamic imagery
Geometric reasoning
21. Statistics and Probability: F-4
Grappling with uncertainty
The development of students' thinking about probability
Representing data
Understanding distributions
Part 5: Extending Mathematics to the Middle Years: 5-9
22. Number: Fractions, Decimals and Reals: 5-9
Building the number line
Whole numbers
Extending our place-value system
Scientific notation
The rationals
The reals
Density of the number line
23. Additive Thinking: 5-9
Ways of working with addition and subtraction
24. Multiplicative Thinking and Proportional Reasoning: 5-9
Meanings for multiplication and division
Working with an extended range of numbers
What is proportional reasoning?
Addressing the multiplicative gap
25. Algebraic Thinking: 5-9
What is algebraic thinking?
Why is algebra important?
Arithmetic, algebraic thinking and problem structure
Meaningful use of symbols
Model approach-using the length model
Equivalence and equations
Algebraic laws
Introducing the distributive law
Simplifying expressions and equations
Functional thinking
26. Measurement Concepts and Strategies: 5-9
Extending measurement concepts
Developing area formulae
Volume and capacity
27. Geometric Thinking: 5-9
Working with spatial objects
Geometric proof
Transformational geometry
Non-Euclidean geometry
Learning geometry in the middle years
28. Statistics and Probability: 5-9
Data investigation
Data representations
Data measures
Describing chance events
Part 6: Entering the Profession
29. Becoming a Professional Teacher of Mathematics
Looking forward
Standards for mathematics teaching
Final words of advice